Backward chaining rule induction
نویسندگان
چکیده
Exploring the vast number of possible feature interactions in domains such as gene expression microarray data is an onerous task. We describe Backward-Chaining Rule Induction (BCRI) as a semi-supervised mechanism for biasing the search for IF-THEN rules that express plausible feature interactions. BCRI adds to a relatively limited tool-chest of hypothesis generation software and is an alternative to purely unsupervised association-rule learning. We illustrate BCRI by using it to search for gene-to-gene causal mechanisms that underlie lung cancer. Mapping hypothesized gene interactions against prior knowledge offers support and explanations for hypothesized interactions, and suggests gaps in current knowledge that induction might help fill. BCRI is implemented as a wrapper around a base supervised-rule-learning algorithm. We summarize our prior work with an adaptation of C4.5 as the base algorithm (C45-BCRI), extending this in the current study to use Brute as the base algorithm (Brute-BCRI). In contrast to C4.5’s greedy strategy, Brute extensively searches the rule space. Moreover, Brute returns many more rules (i.e., hypothesized feature interactions) than does C4.5. To remain an effective hypothesis-generation tool requires that Brute-BCRI more carefully rank and prune hypothesized interactions than does C45-BCRI. Prior knowledge serves to evaluate final BruteBCRI rules just as it does with C45-BCRI, but prior knowledge also serves to evaluate and prune intermediate search states, thus maintaining a manageable number of rules for evaluation by a domain expert.
منابع مشابه
Searching for Meaningful Feature Interactions with Backward-Chaining Rule Induction
Exploring the vast number of possible feature interactions in domains such as gene expression microarray data is an onerous task. We propose Backward-Chaining Rule Induction (BCRI) as a semi-supervised mechanism for biasing the search for plausible feature interactions. BCRI adds to a relatively limited tool-chest of hypothesis generation software, and it can be viewed as an alternative to pure...
متن کاملType-2 Fuzzy Hybrid Expert System For Diagnosis Of Degenerative Disc Diseases
One-third of the people with an age over twenty have some signs of degenerated discs. However, in most of the patients the mere presence of degenerative discs is not a problem leading to pain, neurological compression, or other symptoms. This paper presents an interval type-2 fuzzy hybrid rule-based system to diagnose the abnormal degenerated discs where pain variables are represented by interv...
متن کاملData Mining for Gene Networks Relevant to Poor Prognosis in Lung Cancer Via Backward-Chaining Rule Induction
We use Backward Chaining Rule Induction (BCRI), a novel data mining method for hypothesizing causative mechanisms, to mine lung cancer gene expression array data for mechanisms that could impact survival. Initially, a supervised learning system is used to generate a prediction model in the form of "IF THEN " style rules. Next, each antecedent (i.e. an IF condition) of a pr...
متن کاملData-driven Backward Chaining
CLIPS cannot effectively perform sound and complete logical inference in most real-world contexts. The problem facing CLIPS is its lack of goal generation. Without automatic goal generation and maintenance, Forward chaining can only deduce all instances of a relationship. Backward chaining, which requires goal generation, allows deduction of only that subset of what is logically true which is a...
متن کاملRules Dependencies in Backward Chaining of Conceptual Graphs Rules
Conceptual Graphs Rules were proposed as an extension of Simple Conceptual Graphs (CGs) to represent knowledge of form “if A then B”, where A and B are simple CGs. Optimizations of the deduction calculus in this KR formalism include a Backward Chaining that unifies at the same time whole subgraphs of a rule, and a Forward Chaining that relies on compiling dependencies between rules. In this pap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intell. Data Anal.
دوره 10 شماره
صفحات -
تاریخ انتشار 2006